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Smooth Loops, Generalized Coherent States, and 
Geometric Phases 
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A description of generalized coherent states and geometric phases is given in the 
light of the general theory of smooth loops. 

1. ~ T R O D U C T I O N  

Berry (1984) showed that if  a quantum Hamiltonian depends on some 
parameters h a which slowly evolve in time in such a way that they trace out 
a closed curve C in the space of  these parameters, then the wave function 
can get an additional geometrical phase ~(C). This geometric phase depends 
on the motion of the system in the space of  parameters and is independent 
of  the dynamical evolution. 

Later Aharonov and Anandan (1987) generalized Berry's  result to any 
cyclic evolution of the quantum system by giving up the assumption of  
adiabaticity. Samuel and Bhandari (1988) introduced the geometric phase for 
an arbitrary case; the evolution of the quantum system need be neither unitary 
nor cyclic. These results have a simple geometric interpretation: the evolution 
of the geometric phase is determined by the natural connection in a fiber 
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bundle over a space of rays (Simon, 1983; Aharonov and Anandan, 1987; 
Samuel and Bhandari, 1988). 

Some years ago Giavarini and Onofri (1988) described Berry's phase 
using generalized coherent states. Generalized coherent states are parame- 
trized by points of a homogeneous space where the group acts. These appear 
naturally in physical systems having dynamical symmetries, for instance, in 
certain nonstationary systems such as a quantum oscillator in a variable 
external field, or spin in a varying magnetic field (Perelomov, 1972, 1986). 

In this paper we present an analysis of  generalized coherent states and 
geometric phases from the point of view of the theory of smooth loops 
(Sabinin, 1988, 1991, 1995). 

2. SMOOTH LOOPS AND G E O M E T R I C  PHASES 

Let G be an arbitrary Lie group and T(g) its unitary irreducible representa- 
tion acting in Hilbert space ~ .  Consider a fixed vector 100 ) ~ ~ and set of 
vectors (states) {10s)}, where 10g ) = T(g)10o). 

Definition (Perelomov, 1986). A system of states { 10s): [0g) = T(g) 10o) }, 
where g ~ G and T(g) is a representation of the group G, acting in the Hilbert 
space ~ (100) is a fixed vector in this space) is called a generalized coherent- 
state system {T, 100)}. 

Suppose H C G is an isotropy subgroup for the vector 10o), that is, 
T(h)100) = ei~(h)10o), Vh ~ H. It shows that the coherent state 10g ) is deter- 
mined by a point x = x(g) = g �9 H in the left coset space Gill. Choosing a 
representative element g(x) in any equivalence class x ~ X = G/H, one 
gets a set of generalized coherent states { 10g): 10g ) = ei~10g(x))}. From the 
mathematical point of view we are now considering a certain left homoge- 
neous space GIH uniquely determining the given coherent-state system. Actu- 
ally 10g) depends not on g ~ G, but on the left coset gH ~ G/H. Choosing 
one single element from any coset, one obtains in such a way a cross section 
Q c H, Q f3 H = {single element], Q f'l H = {1G}, Q �9 H = G. Such a 
cross section is called a transversal (quasireductant) of a homogeneous space 
GIH (Baer, 1940, 1941; Sabinin, 1972). Because of one-to-one correspon- 
dence between Q and G/H, it gives us a parametrization of GIH by points 
of Q. We shall use this approach further on. 

Any transversal (quasireductant) Q can be equipped in a canonical way 
with the structure of a left loop (Q, *, �9 (which means a set Q with the 
binary multiplication *, right neutral element �9 x * �9 = x, and unique 
solvability of a * z = b, z = a~b). The construction is as follows: Vql, q2 E 
Q: ql * q2 = "tra(ql " q2), e = 1G, where ql " q2 means a product in the group 
G, and "tra the projection from G onto Q along left cosets, {'trQ(ql �9 q2) = 
Q N [(ql " q2) �9 HI} [see Sabinin (1972) for details]. 
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Remark .  This construction frequently gives a two-sided loop (Q, *, e}, 
which means that a * x = b, y * c = d are uniquely solvable (x = akb, 
y = d / c )  a n d e * x = x * e  = x .  

Generally speaking, the choice of transversal Q is not unique, although 
it is known how the structures of  loops related to different reductants are 
connected (Sabinin, 1972). For a Lie group G with a nondegenerate Killing 
metric on Lie subgroup H a transversal (quasireductant) Q can be constructed 
in such a way that h �9 Q-  h -1 C Q (Vh ~/-/). Such a Q is called a reductant  

(Sabinin, 1972). The standard and unique way to construct a reductant is the 
following: taking ~ and ~ as Lie algebras for G and H, respectively, one can 
introduce a subspace m = {~ ~ ~, (~, ~} = 0} (here (~, -q} means the Killing 
inner product on ~). Since ([, -q) is nondegenerate on 1L we get m f3 ~) = 
{0}, and ~ = rtt 4- [~ (direct sum). Taking Q = {q = exp ~, ~ ~ lrt}, we 
get a smooth reductant, at least locally. 

Thus for any g ~ G we have the unique decomposition g = "trQg �9 "trng = 
q-  h, where q = "trQg ~ Q, h = 1rHg ~ H. Consequently, for the representation 
T of  G we have 

T(g)  = T(~Qg �9 7r .g)  = TOro.g) o T O t . g )  

= T(q)  o T(h) ~ D ( q )  o T(h) (q  ~ Q,  h ~ 14) (1) 

[We have used D(q)  instead of T(q) in order to emphasize that D(q)  is 
considered only for q ~ Q.] Calculating, further, T(ql ' q 2 ) ,  ql, q2 ~ G, we find 

D(q l )  o D(q2) ------ T(ql)  ~ T(q2) ---- T(ql  " q2) 

= T(TrQ(ql �9 q2) " "iraqi �9 q2)) = T((ql * q2) " 'n'n(ql �9 q2)) 

= D(q t  * q2) o T(, tr~q I �9 q2)) 

According to Sabinin (1972), "trn(ql �9 q 2 )  is uniquely determined by the 

associator l(ql, q2) - l  o = Lql,q2 Lq I o Lq2, where Lab = a * b. Thus T('trn(q, �9 
q2)) = A(ql, q2) can be regarded as an associator of  our representation. As 
a result, we get 

D(q l  * q2) = D(q l )  o O(q2 ) o A-t(ql ,  q2) (ql, q2 E Q) (2) 

Note that D(~l) * D(~2) = D(~I * ~2) where * denotes the nonassociative 
multiplication in the representation. 

Let 10g) = D(g)l~0) be an invariant state with respect to the adjoint 
transformation It~g) = AdgD(q)lOg), where AdgD(q)  = D(g)  o D(q)  o D-l(g),  
g, q ~ Q. Using equation (2), we get 

ling) = D(g  * q) o A(g, q)l~0) (3) 



1984 Nesterov and Sabinin 

For the infinitesimal transformations g + dg = Rsqg, where Rs~ f  = g * ~q 
is the right action, we find [let f (p)  be a smooth mapping: s~ _~ ~0~'; we 

use f ,  for the tangent mapping: Tp(~) -~ T~) (~R)] 

dl0g) = dD(g)lOo) -- D(g)(A(g, 0)),(Lgt), dglOo) (4) 

Let g = g(t) be a curve in the space Q. Then equation (4) yields 

(d/dt)lOg) = -D(g)(A(g,  O)),D-l(g)lOg)(Lgi), dg/dt (5) 

which is the differential equation for the invariant s t a t e  10g  ) .  Multiplying by 
(0gl, we obtain 

(Ogl(d/dt) lOg) = - (001(A(g, 0),10o)(Lg 1), dg/dt (6) 

One can write (5) as 

(dirt)lOg) - iA(t)10g) = 0 (7) 

where A = iD(g)(A(g, O)),D-l(g)(Lgl),dgldt is introduced. If one makes a 
gauge transformation 

10g) = ei~(')10g) 

then the A field transforms as 

A ' = A + deddt 

i.e., as proper gauge potential. So equation (5) gives a definition of parallel 
transport in the Hilbert space expressed in terms of  the invariant states with 
respect to the adjoint action of the loop Q. 

Suppose that the normalized state IO(O) = ei~(OlOg(O) evolves according 
to the SchrOdinger equation i(dldt) lO(t)) = HIO(t)); hence d~p/dt = -- (Ogl/-]tlOg) 
+ i(Ogl(dldt)lOg). For the cyclic evolution of  a quantum system, IOg(~)) = 
lOg(o)), g('r) = g(O), with the total phase q~ = ~/ - ~, where 

f2 = - (OglI2110g) dt 

is the dynamical phase and 

- / =  i (0gtd 0g) 
c 

is the Aharonov-Anandan (AA) geometric phase (Aharonov and Anandan, 
1987). Using equation (6), we get 

~/ = - i  ~ (,ol(A(g, 0)),]l~lo)(Lgl), dg (8) 
c 
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Hence ~/defined by equation (8) is independent of  q0 and uniquely determined 
by the associator and the curve C ~ Q. Thus we come to conclusion that 
the AA geometric phase originates in nonassociativity. 

3. EXAMP LES  

Now we consider two applications of the above theory to the generalized 
coherent states for the groups SU(1, 1) and SU(2). 

1. Group SU(1, 1). The group SU(1, 1) can be considered as a group 
of transformations of  the complex plane C. The action of this group is 
intransitive and the complex plane C is divided into three orbits: C+ = {z: 
Izl < 1 }, C_ = {z: Izl > 1 }, Co = {z: Izl = 1 }. The Lie algebra corresponding 
to the group SU(1, 1) is spanned by generators K0, K• with the commutation 
relations [K0, K~] = K_+, [K_, K+] = 2K0. Let us now restrict ourselves to 
consideration of C+. The set of complex numbers 6, "q ~ C+ with the operation 
* forms a two-parameter loop QH(2) (Nesterov and Stepanenko, 1986; Nest- 
erov, 1989, 1990) 

L(q --= i~ * qq - ~ + ~q (9) 
l+~-q 

where ~ is the complex conjugate number (~ = x + iy, ~ = x - iy). The 
associator 1({, -q) = L~-.~ o L~ o L, 1 on QH(2) is determined by 

1 + ~  
1(~, "q) - - -  (10) 

l+n  
and can be written also as l(~, -q) = exp(ict), ot = 2 arg(l + ~ ) .  This loop 
is isomorphic to the geodesic loop of a two-dimensional Lobachevski space 
realized as the upper part of two-sheeted unit hyperboloid H 2 (Sabinin, 1991, 
1995). The isomorphism is established by exponential mapping ~ = e i'p tanh 
('r/2), where ('r, q~) are inner coordinates on H 2. 

The group SU(1, 1) is noncompact and all its unitary irreducuble repre- 
sentations are infinite-dimensional. We shall consider only a discrete represen- 
tation, which is determined by a single number k = 1, 3/2, 2, 5/2 . . . .  and 
Kolk, p,I) = ixlk, pA), p~ = k + m, where m is an integer (m -> 0). The 
operators D(6), determined as 

0(6) = exp(6K+ - ~K_), 6 = - ( r / 2 ) e  -i* (11) 

form a nonassociative representation of the loop QH(2) with the multiplication 
law [see (2)] 

0 ( 6 0  * D(~2) = D(61) o 0(62 ) o exp( - iaK0)  (12) 

where ot = - i  ln(l(~l, ~2)) and ~l = e i*' tanhl611, ~2 = ei*2 tanh1621. The 
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canonical set { Ig)} of coherent states, corresponding to the choice I~bo) = Ik, 
k), is (Perelomov, 1986) 

1[) = (1 - 1[12) k exp([K+)lr (13) 

where [ = e i~* tanh(T/2). The infinitesimal operators in this representation are 

1 + 
(~IKol~) = k I - l~t -----------~ ' (~IK+I~) = 2k I - I~I ------~ 

Now let us compute the geometric phase ~/using (8) and (12). We find 

~/(C) = (~b01K01~b) q~ 8or (14) 
. /  c 

where 8a = i In[(1 + ~8[)/(1 + [8~)] = i(~8[ - [8~). Applying (9), we 
obtain 8[ = d~/(1 - 1~12). This yields 

8or = ik ~ ~d~ - ~d~ /cA (15) ~/(C) = (r c c I -I[I z - 

where A is the area of the hyperboloid's surface corresponding to the region 
bounded by the closed path C ~ C+, taking into account the equation K01~0) 
= 

On the basis of  equation (13) one can calculate ~/directly: 

d~l(C) _ i(~l d d~ldt - ~ d-(,Idt - 2 k  -~t sinh2 'r 
dt ~ l ~ ) = i k  ~ 1 -  I~1 z = ~ (16) 

and the total phase is the same as in (15), 

~c sinh2 x ,/(C) = i (~ldl~) = - 2 k  2dq0 = -kA (17) 
c 

The unit hyperboloid/-/2 can be considered as the phase manifold of the 
quantum parametrically excited oscillator (Perelomov, 1986). Hence (15) 
determines the AA geometric phase for cyclic evolution of this oscillator. 

2. Group S U  (2). The consideration is similar to that for SU(I ,  1). The 
essential difference between the groups SU(2) and SU(1, 1) is that the first 
is compact and simply connected, while the second is neither. The Lie algebra 
of SU(2) is spanned by generators J0, J_+ with the standard commutation 
relations [J0, J_+] = J_+, [J-, J+] = -2J0. Any unitary irreducible representation 
of the group SU(2) is determined by nonnegative integer or half-integer j .  
In the space of representation ~J we shall use the canonical basis I j ,  Ix) 
- j -< Ix -< j of eigenvectors of the operator J0: Jolj, Ix) = Ixlj, Ix). 
The generalized coherent states correspond to points of  the two-dimensional 
sphere S 2 and the set of operators {D(~)} is given by (Perelomov, 1986) 
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D(O = exp(~+ - ~J_), = 0 e_il 3 (18 )  

where 13 = "rr - q~ and 0, q~ are the usual spherical coordinates. This corres- 
ponds to the stereographic projection onto the complex plane C from the 
north pole of the sphere. Applying the operator D ( 0  in its normal form, 

0 ( 0  = exp(tJ+) exp(nJ0) exp ( -~J_ )  (19) 

where t = ei'~ tan(0/2), "q = ln(1 + It12), tO the state vector I%) = I j ,  - j ) ,  
one gets the set of  coherent states (Perelomov, 1986) 

It) = (1 + It12) -j  exp(tJ+)lj ,  - j )  

(tlJolt) = - j  1 - Itl 2 
1 + Itl 2 '  (t lJ+10 = 2 j  1 + Itl - - - - - - - - -~  (20 )  

The sphere S 2 admits a natural quasigroup structure, namely, S 2 is a 
local two-parameter loop QS(2) (Nesterov and Stepanenko, 1986; Nesterov, 
1989, 1990) 

Lgn =-- t * n - t + "q (21) 
1 - ~ a q  

where t,  "q ~ C and the isomorphism between points of  the sphere and the 
complex plane C is established by the stereographic projection from the north 
pole of the sphere: t = ei'p tan(0/2). The associator is determined by 

l(teq) - 1 - t ~  (22) 
1 --  "q~ 

and can be written also as l(t, "q) = exp(ict), a = 2 arg(1 - t~).  The operators 
D ( 0  form a nonassociative representation of  QH(2): 

D(~I) * D(~2) = D(~I) o D(~jz) o exp( - i aKo)  

where oL = - i  ln(l(tl, tz)) and t l  = ei*' tanl~l l ,  t2 = ei~ tanl~21. 
Let us compute T using (8). Applying (23), we find 

T(c) = (r162 ~ ~a 
C 

(23) 

(24) 

where ~ot = i ln[(1 - ~St)/(1 - t ~ ) ]  = i(~St - t ~ ) .  From (21) we get 
~t = dt / ( l  + It12). Now taking into account J01t) = - f i t ) ,  we obtain 

/ .  / .  

~/(C) = (~oIJol%)~b 8oL = ij  qb - jD, (25 )  
c J c 1 + Itl 2 J 
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where 1~ is the solid angle corresponding to the contour C. Using (20) and 
the definition 

= i q~ (~ldl~) 
J C 

one can calculate ~/directly. This yields the same result, ~/ = - j 1 2  
Actually, the sphere S 2 can be considered as the phase manifold of  the 

spin (Perelomov, 1986) and consequently equation (25) gives the AA geomet- 
ric phase for the cyclic evolution of the spin. For instance, the spin precession 
in a variable magnetic field H(t) is described by the Hamiltonian g = 
-KH(t)J( t )  and the geometric phase ~/ = - j l ~  (Berry, 1984). 

4, C O N C L U D I N G  R E M A R K S  

The above discussion shows that the generalized coherent states actually 
are determined by points of the corresponding smooth loop Q and the AA 
geometric phase originates in the nonassociativity of the operation (multiplica- 
tion) in Q. Our approach can be applied also to the evolution of  a quantum 
system that neither unitary nor cyclic. In this general case when the state 
vector does not return to the initial ray, the method of  comparing the states 
is given by Pancharatnam (1975). Let 10t) and Idg2) be any two states which 
are not mutually orthogonal. The Pancharatnam phase 13 is defined as 

eil3 = (~11~2)  
II(g, ll~2)ll (26) 

Now define 

I~('r)) = eiV(~)l~(0)) = D(g('r))l~0) 

such that ~(1) = 13, I~(0)) = I~l), I~J(1)) = 1~2). Then 13 is given by a 
line integral 

I f; 13 = - i  (Oldie) = - i  (t~ol(A(g, O)).l~o)(L~-l), dg 
o 

If" = - i  (~lD(g,)(A(g, 0)), O-l(g~)lqh)(L21), dg (27) 
0 

where we set gl = g(1), g2 = g(2). 
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